Efficient Rijndael Encryption Implementation with Composite Field Arithmetic

نویسندگان

  • Atri Rudra
  • Pradeep K. Dubey
  • Charanjit S. Jutla
  • Vijay Kumar
  • Josyula R. Rao
  • Pankaj Rohatgi
چکیده

We explore the use of subfield arithmetic for efficient implementations of Galois Field arithmetic especially in the context of the Rijndael block cipher. Our technique involves mapping field elements to a composite field representation. We describe how to select a representation which minimizes the computation cost of the relevant arithmetic, taking into account the cost of the mapping as well. Our method results in a very compact and fast gate circuit for Rijndael encryption. In conjunction with bit-slicing techniques applied to newly proposed parallelizable modes of operation, our circuit leads to a high-performance software implementation for Rijndael encryption which offers significant speedup compared to previously reported implementations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Real Time S-Box Construction Using Arithmetic Modulo Prime Numbers

For Rijndael, the length of both the block to be encrypted and the encryption key are not fixed. They can be independently specified to 128, 192 or 256 bits. The number of rounds, however, varies according to the key length. It can be equal to 10, 12 and 14 when the key length is 128 bits, 192 bits and 256 bits, respectively [4]. The basic components of Rijndael are simple mathematical, logical...

متن کامل

A Compact Rijndael Hardware Architecture with S-Box Optimization

Compact and high-speed hardware architectures and logic optimization methods for the AES algorithm Rijndael are described. Encryption and decryption data paths are combined and all arithmetic components are reused. By introducing a new composite field, the S-Box structure is also optimized. An extremely small size of 5.4 Kgates is obtained for a 128-bit key Rijndael circuit using a 0.11-μm CMOS...

متن کامل

Two Methods of Rijndael Implementation in Reconfigurable Hardware

This paper presents an evaluation of the Rijndael cipher, the Advanced Encryption Standard winner, from the viewpoint of its implementation in a Field Programmable Devices (FPD). Starting with an analysis of algorithm’s general characteristics a general cipher structure is described. Two different methods of Rijndael algorithm mapping to FPD are analyzed and suitability of available FPD familie...

متن کامل

Rijndael FPGA Implementations Utilising Look-Up Tables

This paper presents single-chip FPGA Rijndael algorithm implementations of the Advanced Encryption Standard (AES) algorithm, Rijndael. In particular, the designs utilise look-up tables to implement the entire Rijndael Round function. A comparison is provided between these designs and similar existing implementations. Hardware implementations of encryption algorithms prove much faster than equiv...

متن کامل

An Implementation of Pipelined Rijndael with SystemC and Co-emulation with iPROVE

This paper describes an implementation of Rijndael, a new Advanced Encryption Standard (AES), with SystemC. The design started in the un-timed functional level description in C and was gradually refined until all blocks were translated into RTL SystemC, which can be synthesized with CoCentric SystemC Compiler. To improve the verification speed, cycle-accurate co-emulation was used. iPROVE, an F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001